Česky
English
Committee for cooperation of the Czech Republic with Joint Institute for Nuclear Research Login
Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment

Author
Arenz M. University of Bonn, Germany
Dragoun Otokar, Ing. DrSc.  Nuclear Physics Institute of the ASCR
Kovalík Alojz, Ing. DrSc. Nuclear Physics Institute of the ASCR, JINR Dubna
Ryšavý  Miloš, RNDr. CSc.  Nuclear Physics Institute of the ASCR
Sentkerestiová  Jana , Ing. Ph.D. Nuclear Physics Institute of the ASCR
Suchopár Martin, Ing. Ph.D. Institute of Physics ASCR
Vénos Drahoslav, Mgr. CSc. Nuclear Physics Institute of the ASCR
et al.  different institutions

Year
2018

Scientific journal
European Physical Journal D, 78 (9), 778

Web


Abstract
The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of 0.2 eV/c(2) (% 90 CL) by precision measurement of the shape of the tritium beta-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. A common background source in this setup is the decay of short-lived isotopes, such as Rn-219 and Rn-220, in the spectrometer volume. Active and passive countermeasures have been implemented and tested at the KATRIN main spectrometer. One of these is the magnetic pulse method, which employs the existing air coil system to reduce the magnetic guiding field in the spectrometer on a short timescale in order to remove low-and high-energy stored electrons. Here we describe the working principle of this method and present results from commissioning measurements at the main spectrometer. Simulations with the particle-tracking software KASSIOPEIA were carried out to gain a detailed understanding of the electron storage conditions and removal processes.

Cite article as:
M. Arenz, O. Dragoun, A. Kovalík, M. Ryšavý , J. Sentkerestiová , M. Suchopár, D. Vénos, . et al., "Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment", European Physical Journal D, 78 (9), 778 (2018)